Immunopathology of a two-hit murine model of acid aspiration lung injury.

نویسندگان

  • J A Nemzek
  • D R Call
  • S J Ebong
  • D E Newcomb
  • G L Bolgos
  • D G Remick
چکیده

In a two-hit model of acid aspiration lung injury, mice were subjected to nonlethal cecal ligation and puncture (CLP). After 48 h, intratracheal (IT) acid was administered, and mice were killed at several time points. Recruitment of neutrophils in response to acid was documented by myeloperoxidase assay and neutrophil counts in bronchoalveolar lavage (BAL) fluid and peaked at 8 h post-IT injection. Albumin in BAL fluid, an indicator of lung injury, also peaked at 8 h. When the contributions of the two hits were compared, neutrophil recruitment and lung injury occurred in response to acid but were not greatly influenced by addition of another hit. Neutrophil sequestration was preceded by elevations in KC and macrophage inflammatory protein-2alpha in plasma and BAL fluid. KC levels in BAL fluid were higher and peaked earlier than macrophage inflammatory protein-2alpha levels. When KC was blocked with specific antiserum, neutrophil recruitment was significantly reduced, whereas albumin in BAL fluid was not affected. In conclusion, murine KC mediated neutrophil recruitment but not lung injury in a two-hit model of aspiration lung injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutamine Attenuates Acute Lung Injury Caused by Acid Aspiration

Inadequate ventilator settings may cause overwhelming inflammatory responses associated with ventilator-induced lung injury (VILI) in patients with acute respiratory distress syndrome (ARDS). Here, we examined potential benefits of glutamine (GLN) on a two-hit model for VILI after acid aspiration-induced lung injury in rats. Rats were intratracheally challenged with hydrochloric acid as a first...

متن کامل

Acid and particulate-induced aspiration lung injury in mice: importance of MCP-1.

A model of aspiration lung injury was developed in WT C57BL/6 mice to exploit genetically modified animals on this background, i.e., MCP-1(-/-) mice. Mice were given intratracheal hydrochloric acid (ACID, pH 1.25), small nonacidified gastric particles (SNAP), or combined acid plus small gastric particles (CASP). As reported previously in rats, lung injury in WT mice was most severe for "two-hit...

متن کامل

DIFFERENTIAL EXPRESSION OF SURFACE MARKERS CD45RB AND CD44 ON MURINE CD8+ CELLS

Considering the emerging importance of phenotypic markers as indicators of cell function and differentiation, we studied patterns ofCD44 and CD45RB expression in CD8+ murine T cells with prior exposure to antigen or staphylococcal enterotoxin B ( SEB ). Following in vivo priming with two purified protein derivatives (one from a virulent WHO strain and the other from an avirulent strain), T ...

متن کامل

Platelet-activating factor mediates acid-induced lung injury in genetically engineered mice.

Adult respiratory distress syndrome (ARDS) is an acute lung injury of high mortality rate, and the molecular mechanisms underlying it are poorly understood. Acid aspiration-induced lung injury is one of the most common causes of ARDS, characterized by an increase in lung permeability, enhanced polymorphonuclear neutrophil (PMN) sequestration, and respiratory failure. Here, we investigated the r...

متن کامل

Capturing the multifactorial nature of ARDS – “Two‐hit” approach to model murine acute lung injury

Severe acute respiratory distress syndrome (ARDS) presents typically with an initializing event, followed by the need for mechanical ventilation. Most animal models of ALI are limited by the fact that they focus on a singular cause of acute lung injury (ALI) and therefore fail to mimic the complex, multifactorial pathobiology of ARDS. To better capture this scenario, we provide a comprehensive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 278 3  شماره 

صفحات  -

تاریخ انتشار 2000